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Abstract—Despite the substantial progress of active learning for image recognition, there lacks a systematic investigation of
instance-level active learning for object detection. In this paper, we propose to unify instance uncertainty calculation with image
uncertainty estimation for informative image selection, creating a multiple instance differentiation learning (MIDL) method for
instance-level active learning. MIDL consists of a classifier prediction differentiation module and a multiple instance differentiation
module. The former leverages two adversarial instance classifiers trained on the labeled and unlabeled sets to estimate instance
uncertainty of the unlabeled set. The latter treats unlabeled images as instance bags and re-estimates image-instance uncertainty
using the instance classification model in a multiple instance learning fashion. Through weighting the instance uncertainty using
instance class probability and instance objectness probability under the total probability formula, MIDL unifies the image uncertainty
with instance uncertainty in the Bayesian theory framework. Extensive experiments validate that MIDL sets a solid baseline for
instance-level active learning. On commonly used object detection datasets, it outperforms other state-of-the-art methods by significant
margins, particularly when the labeled sets are small. The code is available at https://github.com/WanFang13/MIDL.

Index Terms—Active Learning, Object Detection, Multiple Instance Learning, Instance Differentiation.
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1 INTRODUCTION

W Ith the rise of deep learning, unprecedented progress
has been made in the computer vision area. Nev-

ertheless, deep learning models are typically built upon
fully supervised methods trained using large-scale datasets,
which require intensive human effort for data annota-
tion [1], [2]. Active learning, which tentatively selects a small
proportion of informative data from the unlabeled dataset
for training, is able to achieve comparable performance with
fully supervised methods [3]. Despite the rapid progress
of learning methods with less annotations, e.g., weakly
supervised learning [4], [5] and semi-supervised learning
[6], [7], active learning remains the cornerstone for practical
applications thanks to its simplicity and higher performance
upper bound.

In the computer vision area, active learning meth-
ods are usually specified for image classification tasks.
The goal is to select informative images from unlabeled
image sets by estimating the information of each unla-
beled image [8]–[16]. These methods [9], [16], [17], referred
to as image-level active learning, can be categorized to
uncertainty-based, representativeness-based, and combina-
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tions of them. Uncertainty-based methods [8], [15] involve
various image selection metrics according to the uncer-
tainty/informativeness estimated through classifying unla-
beled images. Representativeness-based methods [9] try to
find out images which can support the distribution of the
unlabeled set.

Despite the substantial progress of image-level active
learning, there still lacks an instance-level active learning
method specified for object detection. Recently, naive ap-
proaches that simply aggregate instance-level uncertainty as
image-level uncertainty [17]–[19] have been explored. These
approaches, however, unfortunately ignore differentiating
the informative instances from noisy instances, which hin-
ders selecting informative images, particularly when there
is a large number of noisy instances from backgrounds
(Fig. 1(a)). The problem about how to accurately estimate
image-level uncertainty by observing instance-level uncer-
tainty remains unsolved.

In this paper, we propose an instance-level active learn-
ing method, termed multiple instance differentiation learn-
ing (MIDL), (Fig. 1(b)), with the aim to bridge the gap
between image-level uncertainty and instance-level uncer-
tainty within the Bayesian framework. In this framework,
image-level uncertainty is conditionally related to instance
uncertainty, instance class probability and instance object-
ness probability. The instance uncertainty is estimated by
the classifier prediction differentiation module. The instance
class probability and instance objectness probability are
estimated by the multiple instance differentiation module.
These two modules are plugged atop the convolutional
neural network (CNN) and alternatingly trained in an end-
to-end fashion (as shown in Fig. 2).

The classifier prediction differentiation module estimates
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instance uncertainty by training two adversarial instance
classifiers which differentiate informative instances while
aligning the distributions of labeled and unlabeled in-
stances. During training, minimizing the prediction differ-
entiation of classifiers drives learning CNN features to align
the distribution of unlabeled instances. Maximizing clas-
sifiers’ prediction differentiation upon fixed features finds
out the informative (hard) instances. Iterative maximizing
and minimizing the classifiers’ differentiation quantify the
distribution overlap and bias of instances which indicates
the uncertainty of each instance (as shown in Fig. 2).

The multiple instance differentiation module re-
estimates the instance uncertainty by introducing a mul-
tiple instance learning (MIL) procedure. During training,
each image is considered to be a bag of instances. The
instance uncertainty is associated with the instance class
probability to guarantee the semantic consistency between
the instances and the image. To suppress the noisy instances
and highlight representative ones, the instance uncertainty
is further weighted by an instance objectness probability.
Both of the instance class probability and instance objectness
probability are learned by an MIL loss defined upon pseudo
image class labels. Through associating the instance uncer-
tainty with the instance class probability and the instance
objectness probability, MIDL unifies image uncertainty with
instance uncertainty, instance class probability and instance
objectness probability in the total probability formula. It
thereby can select the most informative images for detector
training from the perspective of Bayesian theory.

MIDL evolves from our multiple instance active learning
method [20] and is promoted by introducing the multiple in-
stance differentiation module and formulating the Bayesian
theory framework. MIDL is also extended from image object
detection to video object detection where the informative
instances are sparser and more difficult to be identified. The
contributions of this work are summarized as follows:

• We propose an instance-level active learning method,
multiple instance differentiation learning (MIDL),
which bridges the gap between image-level uncer-
tainty and instance-level uncertainty for informative
image selection.

• We formulate the relationships among image-
level uncertainty with instance uncertainty, instance
class probability, and instance objectness probability
within the Bayesian theory framework. We further
reveal that the methods simply averaging instance-
level uncertainty values are special cases of MIDL,
supposing that the instance class probability and (or)
instance objectness probability follow(s) the uniform
distributions.

• We combine MIDL with the deep learning frame-
work and achieve significant performance improve-
ments for active object detection in both images and
videos, setting the first solid baseline for instance-
level active learning.

2 RELATED WORK

Various taxonomies can be used to categorize the large
amount of active learning methods, e.g., uncertainty-
based [21], [22] vs. distribution-based [23]–[25], hand-
crafted metrics [26], [27] vs. learning loss methods [17],
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Fig. 1. Comparison of active object detection methods. (a) Conventional
methods compute image uncertainty by simply averaging instance un-
certainties, ignoring interference from a large number of background
instances. (b) The proposed MIDL leverages uncertainty weighting via
multiple instance learning to filter out interfering instances while bridging
the gap between instance uncertainty and image uncertainty. (Best
viewed in color)

and adversarial learning [16], [18], [28] vs. self-supervised
learning [29]. In this paper, related works are roughly
categorized to image-level active learning or instance-level
active learning.

2.1 Image-Level Active Learning

Active learning, as one of the most important research
topics in machine learning, has attracted intensive attention
in the past few years. In the computer vision area, active
learning was mainly explored for image recognition and
the methods can be roughly categorized into uncertainty-
based and distribution-based. The goal of the uncertainty-
based methods is to define plausible metrics for finding out
informative samples, while that of the distribution-based
methods try to discover representative samples, which are
supposed to have large diversity/representativeness in the
feature space. While the classical approach has provided a
systematic way [30] to combine uncertainty and diversity of
unlabeled instances, we review these two kinds of methods
in what follows.

Uncertainty-based Methods. Uncertainty is the most
popular metric to select informative samples for active
learning [3], which can be defined as the posterior proba-
bility of a predicted class [31], [32], or the gap between the
posterior probabilities of the first and the second predicted
classes [21], [22]. It can also be defined upon entropy [21],
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[26], [27], which measures the variance of unlabeled sam-
ples. The expected model change methods [33], [34] utilized
the present model to estimate the expected network gradient
or expected prediction changes [35], [36]. The samples which
have the potential to cause larger network gradient or ex-
pected prediction changes are defined as more informative.

There was a long history to find “plausible” uncertainty
metrics for informative sample selection. However, without
considering the distributions of labeled and unlabeled sets,
it is impracticable to define a unified uncertainty metric
for various datasets. Combined with deep learning, an im-
proved uncertainty approach [8] used Monte Carlo Dropout
and multiple forward passes to estimate uncertainty. The
motivation is to use the large number of parameters in
the deep network to “learn” a unified uncertainty model.
However, the effectiveness for unseen data distributions
or open sets [13] remains questionable. Furthermore the
efficiency of sample selection is significantly reduced for the
usage of dense dropout layers which hinder the network
convergence, particularly when there are large numbers of
instances to be considered.

Distribution-based Methods. This line of methods select
diverse and informative samples by estimating the distri-
bution of unlabeled samples. Clustering algorithms [37]
were applied to build the unlabeled sample distribution.
Discrete optimization algorithms [23]–[25] were employed
to perform sample selection. By considering sample dis-
tances to their surrounding samples in the feature space,
the context-aware methods [38], [39] selected samples that
can represent the global sample distribution. Core-set [9]
converted the problem of active learning to a core-set iden-
tification problem, i.e., choosing a set of points to support
the distribution of the unlabeled set while capturing the
diversity of unlabeled samples.

In the deep learning era, active learning methods
were combined with representation learning but remain
falling into the uncertainty-based or distribution-based rou-
tines [10]–[12]. Sophisticated methods have extended active
learning to open sets [13] and target domains [40], where the
sample distributions are more difficult to be predicted. The
self-paced active learning approach simultaneously consid-
ered the potential value and easiness of an instance, and
try to train the model at low cost by querying the most
informative samples in each round [14].

The learning loss approach [17] introduced a network
structure to predict the “loss” of the unlabeled samples.
It estimated sample uncertainty and selected samples with
large “loss” in the way like hard negative mining. The se-
quential graph convolutional network [41] was proposed to
select informative samples, which is able to be applied in the
uncertainty-based fashion (UncertainGCN) or distribution-
based fashion (CoreGCN). Task-aware variational adversar-
ial active learning (TA-VAAL) [42] modified task-agnostic
VAAL [16], which considered data distributions of both la-
bel and unlabeled sets by introducing a ranking conditional
generative adversarial network to embed the ranking loss
to VAAL. VaB-AL [43] trained a variational auto-encoder
to handle the data imbalance problem. NCE-Net [44] pro-
posed to reduce the risk of over-estimating unlabeled sam-
ples while improving the opportunity to query informative
samples by replacing the softmax classifier of the deep

neural network with a nearest neighbor classifier. ADS [28]
unified the distribution alignment with sample selection
by introducing adversarial classifiers to the deep learning
framework. It operates in a way like domain adaptation,
where the labeled set is regarded as the source domain and
the unlabeled set the target domain.

Despite the substantial progress, existing methods were
typically designed for image classification and experienced
difficulty to bridge the gap between instance-level observa-
tion and informative image selection. Early methods [34],
[45]–[47] introduced multiple instance learning to select
informative images by discovering representative instances.
This study aims to fill this gap by proposing the multiple
instance differentiation learning, which selects informative
instances by building the relationship between image-level
uncertainty and instance-level uncertainty.

2.2 Instance-Level Active Learning

Instance-level active learning, e.g., active object detection,
is far more challenging than active image recognition as it
requires to handle the large amount of negative instances
and the complex instance distributions.

One solution is to directly extend the learning loss
method [17] specified for image recognition to object de-
tection, by simply sorting the loss predictions of instances
to evaluate the image uncertainty. This line of approaches,
however, could mislead the model towards hard negative
mining but fail to reflect the true distribution of unla-
beled instances. Another solution is simply aggregating
the uncertainty of instances or pixels as the image-level
uncertainty [19]. This line of approaches, however, could
be seriously deteriorated by the large amount of negative
instances/pixels from the backgrounds. The images of more
complex backgrounds and higher averaged uncertainty tend
to be falsely identified as informative ones. To alleviate
the impact of backgrounds, the CDAL approach [48] in-
troduced spatial context to active detection and selected
diverse samples according to their distances to the labeled
set. Nevertheless, how to define proper spatial context for
images of various backgrounds is challenging.

In this study, we propose the MIDL method, with the
aim to define a systematic and theoretical framework to es-
timate image-level uncertainty using instance-level models
while considering the distribution of unlabeled instances.
Based on the class-level differentiation and instance-level
differentiation, MIDL has the advantages to progressively
align the distributions of labeled and unlabeled instances
while depressing the large number of negative instances.

3 MULTIPLE INSTANCE DIFFERENTIATION LEARN-
ING

We first overview the proposed MIDL method in Sec-
tion 3.1. We then detail the MIDL modules within the
unified Bayesian theory framework, where the classifier
prediction differentiation module for instance uncertainty
estimation, the multiple instance differentiation module for
image uncertainty estimation, and the joint instance-image
uncertainty learning for informative image selection are de-
scribed in Sections 3.2–3.4 respectively. Finally, the proposed
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Fig. 2. Overview of the proposed multiple instance differentiation learning (MIDL). In the Bayesian framework, image-level uncertainty is conditionally
related to instance uncertainty, instance class probability and instance objectness probability, which are respectively estimated by the classifier
prediction differentiation module and the multiple instance differentiation module.

TABLE 1
Terms and symbols.

Method Formulation of p(I|x,Θ)

xi, x, X instance, image and image set

yi, y , Y instance label, image label and image
label set

f , g, θf , θg , Θ
instance classifier/regressor, feature
extractor, parameters of each module,
parameters of MIDL

p(I|x,Θ) image uncertain probability

p(I|xi, yi, x,Θ)
instance uncertain probability when
given class label

p(yi|xi, x,Θ) instance class probability

p(xi|x,Θ) instance objectness probability

method is analyzed in Section 3.5. To better understanding
the contents in the following sections, we summarize the
main terms and symbols in Tab. 1.

3.1 Overview

Active object detection is defined as a learning task where a
small set of images X 0

L (the labeled set) have instance labels
Y0
L and a large set of images X 0

U (the unlabeled set) have
no instance label. Each instance label consists of a bounding
box yloc and a class label ycls. A detection model M0 is
initially trained upon the labeled set {X 0

L,Y0
L}. Given the

initial model M0, active object detection iteratively selects a
set of imagesX 0

S fromX 0
U to label. The newly labeled images

are merged with X 0
L to update the labeled set X 1

L, i.e., X 1
L =

X 0
L ∪ X 0

S . The selected image set X 0
S is expected to be the

most informative, i.e., improving the detection performance
as much as possible. Based on the updated labeled set X 1

L,
the detection model is retrained and updated to M1. The
model training and sample selection repeat until the size of
labeled set reaches the annotation budget.

Considering the large number1 of candidate instances
in each image, there are three problems that need to be
solved for active object detection: (1) how to evaluate the
uncertainty of the unlabeled instances using detection mod-
els trained on the labeled set; (2) how to precisely estimate
the image uncertainty given noisy and redundant instances;
(3) how to jointly learn instance and image uncertainty for
active image selection.

MIDL handles these three problems by introducing three
modules. For the first problem, MIDL uses the classifier
prediction differentiation module to highlight informative
instances within the unlabeled images as well as aligning
the distributions of the labeled and unlabeled instances
(shown in the upper part of Fig. 2). This is a procedure
to generalize the model trained on the labeled set to the
unlabeled set in a way like transfer learning, which fills the
distribution gap between the two sets. For the second prob-
lem, MIDL weights the instance uncertainty by introducing
the instance objectness probability. For the third problem,
MIDL introduces MIL to both the labeled and unlabeled sets
to estimate the image uncertainty by weighting the instance
uncertainty. This is done by treating each image as an
instance bag while weighting the instance uncertainty under
the supervision of the image classification loss. Optimizing
the image classification loss facilitates highlighting truly

1. For example, the RetinaNet detector [49] produces ∼100k of an-
chors (instances) for an image.
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representative instances belonging to the same object classes
while suppressing noisy ones (shown in the lower part of
Fig. 2).

3.2 Classifier Prediction Differentiation for Instance
Uncertainty Estimation
To identify informative instances, we introduce two adver-
sarial classifiers to the detector head (shown in Fig. 3(b)).
These two adversarial classifiers are trained on the labeled
and unlabeled sets but have maximum prediction differen-
tiation. As shown in Fig. 2(upper), the unlabeled instances
which have larger prediction discrepancy by the adversarial
classifiers have larger uncertainty. Such instances typically
are far away from the labeled set and close to the classifier
boundaries. The details are described bellow.

Training on the Labeled Set. The detection model,
which consists of a feature extractor g parameterized by
θg and two instance classifiers f1 and f2 parameterized by
θf1 and θf2 , is trained on labeled instances. In the detection
model, a bounding-box regressor fr parameterized by θfr is
trained to perform object localization. For object detection,
each image x from the labeled set XL can be represented
by multiple instances {xi, i = 1, ..., N}, where each in-
stance corresponds to a feature anchor on the convolutional
feature map [49] and N is the instance number in x. Let
{yi, i = 1, ..., N} denote the set of the instance labels in
image x. The detection model is trained by optimizing the
following detection loss, as

arg min
Θ

Ll =
∑
x∈XL

ldet(x,Θ)

=
∑
x∈XL

∑
i

(
FL(ŷf1i , y

cls
i ) + FL(ŷf2i , y

cls
i )

+ SmoothL1(ŷfri , y
loc
i )
)
,

(1)

where Θ = {θf1 , θf2 , θfr , θg}. FL(·) is the focal loss [49] for
dense instance classification and SmoothL1 is the smooth
L1 loss for bounding-box regression. ŷf1i = f1(g(xi)) and
ŷf2i = f2(g(xi)) denote the classification results and ŷfri =
fr(g(xi)) the localization results. yclsi and yloci respectively
denote the ground-truth class label and bounding box label.

Classifier Differentiation on the Unlabeled Set. Given
the detection model trained on the labeled set, we propose a
classifier differentiation process to identify the informative
instances by first maximizing the classifiers’ prediction dis-
crepancy and then minimizing this discrepancy, as shown

in Fig. 2(upper). The unlabeled instances which are far way
(biased) from the labeled set (distribution) are regarded as
informative. Adding these biased instances to the labeled
set facilities aligning the distributions of the labeled and
unlabeled sets.

(1) Maximizing Classifier Discrepancy. Before the labeled
set can precisely represent the unlabeled set, there exists a
distribution bias between them, especially when the labeled
set is small. The informative instances are in the biased
distribution area. To find them out, f1 and f2 are designed
as the adversarial instance classifiers with larger predic-
tion discrepancy on the instances close to the classification
boundary (shown in Fig. 2(upper)). The instance uncertainty
is defined as the prediction discrepancy of f1 and f2.

To find out informative instances, it requires to fine-tune
the network and maximize the prediction discrepancy of the
adversarial classifiers (shown in Fig. 3(b)). In this procedure,
θg is fixed so that the distributions of both the labeled and
unlabeled instances are fixed. θf1 and θf2 are fine-tuned on
the unlabeled set to maximize the prediction discrepancies
for all instances. At the same time, it requires to preserve the
detection performance on the labeled set. This is fulfilled by
optimizing the following loss function, as

arg min
Θ\θg

Lmax =
∑
x∈XL

ldet(x,Θ)− λ
∑
x∈XU

ldif (x,Θ), (2)

where

ldif (x,Θ) =
1

N × C
∑
i

∑
c

(ŷf1i,c − ŷ
f2
i,c)

2 (3)

denotes the prediction discrepancy loss. N is the number of
instances in image x and C is the number of object classes in
the dataset. ŷf1i , ŷ

f2
i ∈ RC are the instance classification pre-

dictions of the two classifiers for the i-th instance in image
x, where ŷi,c is the prediction score of class c for instance xi.
λ is a regularization hyper-parameter determined by exper-
iment. As shown in Fig. 2(upper), the informative instances
with different predictions by the adversarial classifiers tend
to have larger prediction differentiation, which means larger
uncertainty.

(2) Minimizing Classifier Discrepancy. After maximizing
the prediction discrepancy, we further propose to minimize
the prediction discrepancy to align the distributions of the
labeled and unlabeled instances (shown in Fig. 3(c)). In
this procedure, the classifier parameters θf1 and θf2 are
fixed, while the parameters θg of the feature extractor are
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optimized by minimizing the prediction discrepancy loss,
as

arg min
θg

Lmin =
∑
x∈XL

ldet(x,Θ) + λ
∑
x∈XU

ldif (x,Θ). (4)

By minimizing the prediction discrepancy, the distribution
bias between the labeled set and the unlabeled set is mini-
mized and their features are aligned, as much as possible.

Iterative Training. In each active learning cycle, the clas-
sifier differentiation procedures repeat so that the instance
uncertainty is learned and the instance distributions of the
labeled and unlabeled sets are progressively aligned. This
actually defines an unsupervised learning procedure, which
leverages the information (i.e., prediction discrepancy) of
the unlabeled set to improve the detection model.

After iterative training with the labeled set (Eq. 1) and
classifier differentiation learning with both the labeled and
unlabeled sets (Eq. 2 and Eq. 4 ), the instance-level model is
learned and the informative instances are identified by the
classifiers’ prediction differentiation. The remaining prob-
lem of selecting informative images becomes how to com-
pute the image-level uncertainty based upon the instance
uncertainty.

3.3 Multiple Instance Differentiation for Image Uncer-
tainty Estimation

By performing classifier prediction differentiation, the
instance-level uncertainty is estimated by the differentia-
tion of the two classifiers. However, the problem of how
to precisely estimate the image uncertainty with noisy
and clustered instances remains. MIDL aims to solve this
problem in a systemically manner by modeling the image-
level uncertainty and instance-level uncertainty in a unified
Bayesian probability framework.

Let p(I|x,Θ) be the probability of image x to be infor-
mative under the instance-level model parameterized by Θ.
p(I|yi, xi, x,Θ) denotes the uncertain probability of instance
xi given class label yi. As described in Section 3.2, an
unlabeled instance with large prediction differentiation is
an “outlier” of the labeled set and seen as uncertain one.
Based on the instance prediction differentiation, we define
the instance uncertain probability as

p(I|yi, xi, x,Θ) =
(
Sigmoid(ŷf1i,c)− Sigmoid(ŷf2i,c)

)2
, (5)

p(I |yi, xi, x,Θ)
f1

f2

fmil p(yi|xi, x,Θ)

p(xi|x,Θ)

p(I |x, Θ)
Instance uncertainty Image uncertainty

Instance Class 
Probability

Instance Objectness
Probability

g

Fig. 5. Multiple instance differentiation architecture for image uncertainty
estimation.

and re-formulate Eq. 3 as

ldif (x,Θ) =
∑
i

(∑
yi

p(I|yi, xi, x,Θ)
1

C

)
1

N
. (6)

In Eq. 6, the uncertain probability of an image is calcu-
lated by averaging the uncertain probabilities of instances
in the image, i.e., treating each instance with equal impor-
tance. Obviously, Eq. 6 ignores the differentiation among
instances, where most crowded background instances are
less important for informativeness estimation. Furthermore,
for a specific object class, the instance uncertainty also varies
from image to image. Therefore, when performing Eq. 6,
the image uncertainty would be interfered by plenty of
noisy instances, which causes the inconsistency between the
image uncertainty and instance uncertainty. To differentiate
the instances in image x during training, we respectively
replace the terms 1/C and 1/N in Eq. 6 with the instance
class probability p(yi|xi, x,Θ) and the instance objectness
probability p(xi|x,Θ). Then, Eq. 6 is generalized to

ldif (x,Θ) =
∑
i

(∑
yi

p(I|yi, xi, x,Θ)p(yi|xi, x,Θ)

)
p(xi|x,Θ)

=
∑
i

p(I|xi, x,Θ)p(xi|x,Θ)

= p(I|x,Θ).
(7)

Eq. 7 shows that the relationship between the instance
uncertainty and the image uncertainty is established upon
the instance class probability p(yi|xi, x,Θ) and the instance
objectness probability p(xi|x,Θ). To estimate these proba-
bilities, we respectively define the MIL procedure on both
the labeled and unlabeled sets.

Multiple Instance Learning. MIL treats each image
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as an instance bag and utilizes the instance classification
predictions to estimate the bag labels. In turn, it weights
the instance uncertainty scores by minimizing the image
classification loss. This actually defines an Expectation-
Maximization procedure [50], [51] to weight instance un-
certainty across images/bags while filtering out noisy in-
stances. Let y denote the image class label, where yc ∈ [0, 1]
denotes whether the image contains objects of class c. In
the labeled set, y can be immediately obtained based on the
ground-truth labels yi of objects in the image. Based on the
relationship between image class label y and instance class
yi, the image class probability p(y|x,Θ) can be predicted by
the bag of instances as

p(y|x,Θ) =
∑
i

p(y|xi, x,Θ)p(xi|x,Θ)

=
∑
i

p(yi|xi, x,Θ)p(xi|x,Θ).
(8)

The MIL loss is then defined as

lmil(x,Θ) = −
∑

y

(
y log p(y|x,Θ)

+(1− y) log(1− p(y|x,Θ)
)
.

(9)

By combining Eq. 8 and Eq. 9, the instance class proba-
bility p(yi|xi, x,Θ) and the instance objectness probability
p(xi|x,Θ) are learned when Eq. 9 is optimized.

Instance Class and Objectness Probabilities. Given the
uncertainty p(I|yi, xi, x,Θ) of each instance xi ∈ x and
Eq. 7, the first step of computing image x′s uncertainty is to
calculate the instance class probability p(yi|xi, x,Θ) and the
instance objectness probability p(xi|x,Θ). To achieve this
goal, we introduce an MIL branch fmil parameterized by
θfmil

, as shown in Fig. 4 and Fig. 5. The network parameters
Θ is then updated to Θ = {θf1 , θf2 , θfr , θg, θfmil

}. fmil
contains two sub-branches which output ŷf

c
mil
i,c and ŷ

fo
mil
i,c

respectively. The instance class probability p(yi|xi, x,Θ) is
predicted upon ŷf

c
mil
i,c as

p(yi,c|xi, x,Θ) =



exp(ŷ
fc
mil
i,c )∑

c exp(ŷ
fc
mil
i,c )

, if max
c
ŷ
fc
mil
i,c > δfg

1− exp(ŷ
fc
mil
i,c )∑

c 1− exp(ŷ
fc
mil
i,c )

, otherwise,

(10)
where δfg is an empirical threshold for foreground. In
Eq. 10, when maxc ŷ

fc
mil
i,c > δfg , the instance is highly

confident to be foreground and therefore the instance class
probability is directly assigned by the output of the MIL
branch. However, when maxc ŷ

fc
mil
i,c ≤ δfg , the instance is

likely to be background. As there are no background images
(images does not contain any of the foreground objects) in
the dataset, the MIL branch does not predict confidence
for background class. Considering that the background
instances takes up the largest proportion (>90%) of in-
stances in the object detection task, we use a simple reverse
operation to compute the class probability of background
instance as the second line of Eq. 10. The instance objectness

TABLE 2
Formulations of active learning methods. C and N are numbers of

classes and anchors respectively. Θ denotes the network parameters.

Method Formulation of p(I|x,Θ)

CDAL
[48]

∑
xi

(
p(I|xi, x,Θ)

)
1
N

LL4AL
[17]

∑
xi

(∑
yi

p(I|yi, xi, x,Θ)× 1
C

)
× 1

N

MI-AOD
[20]

∑
xi

(∑
yi

p(I|yi, xi, x,Θ)p(yi|xi, x,Θ)
)
× 1

N

MIDL
∑
xi

(∑
yi

p(I|yi, xi, x,Θ)p(yi|xi, x,Θ)
)
p(xi|x,Θ)

probability is predicted upon ŷf
o
mil
i,c as

p(xi|x,Θ) =
exp(maxc ŷ

fo
mil
i,c )∑

i exp(maxc ŷ
fo
mil
i,c )

. (11)

When Eq. 9 is optimized, the foreground instances have
high instance class probability and instance objectness prob-
ability while the background ones have low probabilities.
By combining Eqs. 10 and 11 with Eq. 7, the foreground
instances with rich information are highlighted, while the
redundant and noisy background instances with little infor-
mation are suppressed. Consequently, the image uncertainty
is mainly defined on instances which can most discriminate
the image class and the image uncertainty and instance
uncertainty are unified.

3.4 Joint Instance-Image Uncertainty Estimation for
Active Image Selection

Combining Eqs. 5, 10 and 11, the image uncertainty
p(I|x,Θ) in Eq. 7 is estimated by using the instance class
probability and the instance objectness probability, where
the informative instances are highlighted to ensure the
consistency between the image uncertainty and the instance
uncertainty. Finally, the learning loss of MIDL is defined as

arg min
Θ

LMIDL =
∑
x∈XL

ldet(x,Θ)

+ Lmax(x,Θ \ θg) + Lmin(x, θg)

+
∑
x∈XL

lmil(x,Θ)).

(12)

As shown in Fig. 2, with a network feed-forward proce-
dure, the adversarial instance classifiers output prediction
discrepancy to estimate instance uncertainty. The instance
class probability and instance objectness probability are pre-
dicted by the MIL branch. With a network back-propagation
procedure, the gradient of each instance is weighted by
these probabilities to highlight the informative instances.
After multiple network feed-forward and backward proce-
dures, the image uncertainty is estimated.
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Fig. 6. Performance comparison of active object detection methods. (a) On PASCAL VOC using RetinaNet. (b) On PASCAL VOC using SSD. (c)
On MS COCO using RetinaNet.

3.5 Discussion

In this section, we analyze the relations between existing
instance-level learning methods and the proposed MIDL. It
can be seen in Tab. 2 that existing methods that simply av-
erage instance-level uncertainty are special cases of MIDL.
CDAL [48] uses contextual diversity to estimate uncertainty
but ignores the differentiation of instances. LL4AL [17] uses
the predicted loss as the instance uncertainty for each class.
However, the differentiations of both the class and instance
are ignored. MI-AOD [20] weights each instance with the
class score, but still ignores the differentiation of crowded
instances. Our proposed MIDL considers both the class
differentiation and instance differentiation and therefore can
precisely estimate image-level uncertainty, solving instance-
level active learning in a systematic framework.

4 EXPERIMENTS

4.1 Experimental Settings

Datasets. For image object detection task, we use the PAS-
CAL VOC and MS COCO datasets. The trainval sets of
PASCAL VOC 2007 and 2012 datasets which contain 5011
and 11540 images are used for training. The VOC 2007 test
set is used for evaluation under the metric of mean average
precision (mAP). The MS COCO dataset contains 80 object
categories with challenging aspects including dense objects
and small objects with occlusion. We use the train set with
117k images for active learning and the val set with 5k
images for evaluating AP. For video object detection task,
we use the large-scale ImageNet VID dataset [52], which
contains 30 object categories. The train set of ImageNet
VID contains 3,862 videos and the val set contains 555
videos. For the large redundancy of video frames, it is
important to learn discriminate detectors using few infor-
mative instances. Following the settings in [53], we train
object detectors on the train set and evaluate them on the
val set. For instance segmentation, we use the augmented
PASCAL VOC 2012, which is a combination of the original
PASCAL VOC 2012 and the whole SBD [54]. It contains 20
object categories with 10,582 training images and 1,449 val
images.

Active Learning Settings. We use the RetinaNet [49]
equipped with ResNet-50 and SSD [55] equipped with VGG-
16 as the base detector. For RetinaNet, MIDL uses 5.0% of
randomly selected images from the training set to initialize
the labeled set on PASCAL VOC. In each active learning
cycle, it selects 2.5% of the training images from the rest
unlabeled set until the labeled images reach 20.0% of the
training set. For the large-scale MS COCO, MIDL uses only
2.0% of randomly selected images from the training set to
initialize the labeled set, and then selects 2.0% of the training
images from the rest of the unlabeled set in each cycle until
reaching 10.0% of the training set. In each cycle, the model
is trained for 26 epochs with the mini-batch size 2 and
the learning rate 0.001. After 20 epochs, the learning rate
decreases to 0.0001. The momentum and the weight decay
are set to 0.9 and 0.0001, respectively. For SSD, we follow
the settings in LL4AL [17] and CDAL [48], where 1k images
in the training set are selected to initialize the labeled set
and 1k images are selected in each cycle. The learning rate
is 0.001 for the first 240 epochs and reduced to 0.0001 for
the last 60 epochs. The mini-batch size is set to 32 which is
required by LL4AL.

We compare MIDL with random sampling, entropy sam-
pling, Core-set [9], LL4AL [17], CDAL [48] and our previous
work MI-AOD [20]. For entropy sampling, we use the aver-
aged instance entropy as the image uncertainty. We repeat
all experiments for 5 times and use the mean performance.
MIDL and other methods share the same random seed and
initialization for a fair comparison. λ defined in Eqs. (2) and
(4) is set to 10.

4.2 Performance
4.2.1 Image Object Detection
PASCAL VOC. In Fig. 6, we run the proposed MIDL on
a single TITAN RTX/A100 GPU, report its performance
and compare it with state-of-the-art methods. Using either
the RetinaNet [49] or SSD [56] detector, MIDL outperforms
state-of-the-art methods with large margins. Particularly, it
respectively outperforms state-of-the-art methods by 15.54%
(Core-set), 7.81% (CDAL), and 4.81% (CDAL) when using
5.0%, 7.5%, and 10.0% samples. With 20.0% samples, MIDL
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TABLE 3
Performance comparison on the ImageNet VID dataset.

Methods
mAP (%) on Proport. (%) of Labeled Imgs.

10 15 20 25 30 100.0

Random 44.21 47.71 55.60 58.84 61.77

77.83
Entropy 44.21 49.62 56.60 58.57 61.99

MI-AOD [20] 44.48 52.71 57.03 59.97 63.11

MIDL 44.72 54.10 57.85 60.62 63.70

achieves 73.23% detection mAP, which significantly outper-
forms CDAL and MI-AOD by 7.9% and 1.2%. The improve-
ments validate that MIDL can precisely learn instance uncer-
tainty while selecting informative images. When using the
SSD detector, MIDL outperforms state-of-the-art methods in
almost all cycles, demonstrating the general applicability of
MIDL to object detectors.

MS COCO. MS COCO is a challenging dataset with
more categories, denser objects, and larger scale varia-
tion, where MIDL also outperforms the compared methods
(Fig. 6). Particularly, it respectively outperforms Core-set
and CDAL by 1.3%, 1.2%, and 2.2%, and 1.3%, 2.0%, and
2.8% when using 2.0%, 4.0%, and 10.0% labeled images.

4.2.2 Video Object Detection
In Tab. 3, we report the performance of the proposed
MIDL for video object detection on the ImageNet VID
dataset [52]. Compared with the baseline method “Ran-
dom Sampling”, the “Entropy Sampling” approach achieves
1.91% (49.62% vs. 47.71%) improvement with 15% labeled
videos. When more videos (25%) are selected, “Entropy” be-
comes slightly worse than “Random”. In the last cycle (30%
labeled videos), “Entropy Sampling” outperforms “Random
Sampling” by 0.22%% (61.99% vs. 61.77%). These results
show that “Entropy Sampling” has the chance to discover
informative videos but may suffer from less informative
videos without differentiating instances and classes. Unlike
“Entropy Sampling”, the MI-AOD approach consistently
outperforms both “Random Sampling” and “Entropy Sam-
pling” in all active learning cycles. MIDL further improves
MI-AOD by 0.59% (63.70% vs. 63.11%) and significantly
outperforms “Random Sampling” and “Entropy Sampling”
by 1.93% and 1.71% respectively at the last training cycle,
which indicates the effectiveness of class prediction differen-
tiation and multiple instance differentiation for informative
object selection from video clips.

4.2.3 Instance Segmentation
In Tab. 4, we report the performance of the proposed
MIDL for instance segmentation on the PASCAL VOC 2012
dataset. The “Entropy Sampling” approach outperforms the
baseline method “Random Sampling” by 1.53% (55.34%
vs 53.81%) with 25% labeled images. MI-AOD consistently
outperforms both “Random Sampling” and “Entropy Sam-
pling” in all active learning cycles. MIDL further improves
MI-AOD by 0.88% (57.21% vs. 56.33%) and significantly
outperforms “Random Sampling” and “Entropy Sampling”

TABLE 4
Instance segmentation performance comparison on the PASCAL VOC

2012 dataset.

Methods
mAP50 (%) on Proport. (%) of Labeled Imgs.

5 10 15 20 25 100.0

Random 15.23 41.51 48.42 52.29 53.81

63.60
Entropy 15.23 42.65 50.68 53.85 55.34

MI-AOD [20] 15.12 42.36 51.89 54.50 56.33

MIDL 15.15 42.31 52.25 55.21 57.21

by 1.93% and 1.71% respectively at the last training cycle,
which indicates the effectiveness of class prediction differen-
tiation and multiple instance differentiation for informative
instance segmentation.

4.3 Ablation Analysis

Classifier Prediction Differentiation. As shown in Tab. 5,
with the classifier prediction differentiation module, the
detection performance is improved up to 70.06% in the last
cycle, which outperforms the Random method by 2.97%
(70.06% vs. 67.09%), demonstrating the effectiveness of the
class prediction differentiation module for instance uncer-
tainty estimation.

Multiple Instance Differentiation. In Tab. 5, the classi-
fier prediction differentiation module achieves comparable
performance with the method using the random image
selection strategy in the early cycles. This is because there
are significant noisy instances that make the instance un-
certainty inconsistent with image uncertainty. After using
the multiple instance differentiation module to differentiate
the instance uncertainty, the performance at early cycles is
improved by 5.04%∼17.09% in the first three cycles (row 5
vs. row 2 in Tab. 5). In the last cycle, the performance is
improved by 1.28% (68.48% vs. 67.20%) in comparison with
the classifier prediction differentiation module and 1.39% in
comparison with the Random method (68.48% vs. 67.09%).
Interestingly, when using 100.0% images for training, the
detector with the multiple instance differentiation module
outperforms the detector without the multiple instance dif-
ferentiation module by 1.09% (78.37% vs. 77.28%). When
further applying the instance objectness probability, the per-
formance are improved in all cycles (row 9 vs. row 8). These
results clearly show that the multiple instance differentia-
tion module can suppress the interfering instances while
highlighting more representative ones, which can indicate
informative images for detector training. Compared with
hand-crafted sample selection strategies (Rand., Max Unc.
and Mean Unc. in Tab. 5), selecting images by the image un-
certainties learned by the joint instance-image uncertainty
learning module (Section 3.4) further improves the detection
performance.

With the multiple instance differentiation module and
joint instance-image uncertainty learning module, MIDL
outperforms the SOTA method MI-AOD [20] that only uses
the instance class probability in all cycles (row 9 vs. row
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TABLE 5
Module ablation on PASCAL VOC. The first line shows the result of the baseline method with random image selection. “Max Unc.” denotes that the
image uncertainty is represented by the maximum instance uncertainty. “Mean Unc.” denotes the averaged instance uncertainty. “CP” and “COP”
respectively denote instance class probability and both of instance class and objectness probability. “CPD”, “MID” and “JUL” respectively denote

classifier prediction differentiation, multiple instance differentiation and joint instance-image uncertainty learning.

Training Sample Selection mAP (%) on Proportion (%) of Labeled Images

CPD MID Rand. Max
Unc.

Mean
Unc. JUL 5.0 7.5 10.0 12.5 15.0 17.5 20.0 100.0

1 X 28.31 49.42 56.03 59.81 64.02 65.95 67.09

77.28
2 X X 30.09 49.17 55.64 60.93 64.10 65.77 67.20

3 X X 30.09 49.79 58.94 63.11 65.61 67.84 69.01

4 X X 30.09 49.74 60.60 64.29 67.13 68.76 70.06

5 CP X 47.18 57.12 60.68 63.72 66.10 67.59 68.48

78.37
6 CP X 47.18 57.58 61.74 64.58 66.98 68.79 70.33

7 CP X 47.18 58.03 63.98 66.58 69.57 70.96 72.03

8 X X 32.58 52.90 60.97 61.39 66.19 67.47 69.39

9 COP X 48.21 60.94 66.14 68.98 70.59 71.94 73.23

TABLE 6
Performance under different hyper-parameters λ.

λ
mAP (%) on Proportion (%) of Labeled Imgs.

5.0 7.5 10.0 12.5 15.0 17.5 20.0

1 48.53 61.04 65.33 68.72 69.69 71.40 72.49

5 48.53 60.86 65.16 68.45 69.41 71.42 72.52

10 48.53 61.67 66.00 68.31 69.76 71.20 72.70

20 48.53 61.61 66.58 68.65 70.29 71.72 72.49

50 48.53 60.67 64.36 67.45 69.49 71.09 72.12

TABLE 7
Comparison of time costs on PASCAL VOC.

Method
Time (h) on Proportion (%) of Labeled Imgs.

5.0 7.5 10.0 12.5 15.0 17.5 20.0

Random 0.77 1.12 1.45 1.78 2.12 2.45 2.78

CDAL [48] 1.18 1.50 1.87 2.19 2.68 2.83 2.82

MI-AOD [20] 1.03 1.42 1.78 2.18 2.55 2.93 3.12

MIDL 1.06 1.46 1.83 2.24 2.62 3.01 3.21

7). Especially, MIDL significantly outperforms MI-AOD by
3.64%, 2.02% and 1.73% respectively in the 2nd, 3rd, 4th
cycles. In the last cycle, the detection mAP reaches 72.7%,
which outperforms MI-AOD by 0.63% (72.70% vs. 72.03%).

Hyper-parameters and Time Cost. The effect of the
regularization factor λ defined in Eqs. (2) and (4) is shown
in Tab. 6. MIDL has the best performance when λ is set to
10. Tab. 7 shows that MIDL costs less time at early cycles
than CDAL.

Unlabeled Image CPD  MIDˆclsy

Fig. 7. Visualization of learned and differentiated instance uncertainty
and image classification score. “CPD” and “MID” respectively denote
classifier prediction differentiation and multiple instance differentiation.
(Best viewed in color)

4.4 Model Analysis

Visualization Analysis. In Fig. 7, we visualize the learned
and re-weighted uncertainty and image classification scores
of instances. The heatmaps are calculated by summarizing
the uncertainty scores of all instances. With only the clas-
sifier prediction differentiation module, there exist inter-
ference instances from the background (row 1) or around
the true positive instance (row 2), and the results tend to
miss the true positive instances (row 3) or instance parts
(row 4). MIL can assign high image classification scores
to the instances of interest while suppressing backgrounds.
As a result, MIDL leverages the image classification scores
to weight instances towards accurate instance uncertainty
prediction. In Fig. 8, we visualize the instance uncertain
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probability p(I|yi, xi, x,Θ) (Fig. 8 upper) and instance class
probability p(yi|xi, x,Θ) (Fig. 8 lower) with respective to the
object categories. The categories in row 1 and row 3 are with
highest uncertainty scores (argmaxyi

∑
xi
p(I|yi, xi, x,Θ)),

while categories in row 2 and row 4 are with lowest uncer-
tainty scores. In Fig. 8 left and middle, it can be seen that
p(I|yi, xi, x,Θ) lacks semantic discrimination and effected
by the similar classes (Line 1). p(yi|xi, x,Θ) is discriminative
to suppress the similar classes but can not indicate the infor-
mative areas in images (Line 3). Combining p(I|yi, xi, x,Θ)
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Fig. 11. Performance deviation comparison on the PASCAL VOC
datasets. “Rand.” denotes random sampling.

with p(yi|xi, x,Θ) results in discovering informative area
with less noise (as shown in Fig. 9 last column). In Fig. 8
right, the classification is failed and both p(I|yi, xi, x,Θ)
and p(yi|xi, x,Θ) focus on background noise. In Fig. 9, we
visualize the instance uncertain probability p(I|yi, xi, x,Θ),
the instance class probability p(yi|xi, x,Θ), and instance
objectness probability p(xi|x,Θ). From the last column of
Fig. 9, one can be seen that MIDL is able to differentiate the
instance uncertain probability p(I|yi, xi, x,Θ) and discovers
as much as informative instances of foreground objects with
least background noise.

Statistical Analysis. In Fig. 10, we calculate the number
of true positive instances selected in each active learning
cycle. It can be seen that MIDL significantly hits more true
positives in all learning cycles. This shows that the proposed
MIDL approach can activate true positive objects better
while filtering out interfering instances, which facilities se-
lecting informative images for detector training.

4.5 Robustness Analysis
Performance Deviation. In Fig. 11, we compare the perfor-
mance deviation of MIDL with those of CDAL and random
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Fig. 12. Performance comparison with respect to the size of X 0
L, biased initial sampling and noisy labeling on PASCAL VOC datasets. “Rand.”
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Fig. 13. Performance comparison under different sizes of XS on the
PASCAL VOC datasets. “Rand.” denotes random sampling.

sampling. The performance deviations of CDAL and ran-
dom sampling are significantly larger than that of MIDL
when the labeled set is small. With more labeled images,
the performance deviations of all methods decrease, while
that of MIDL keeps smaller than other methods at almost
all cycles. These results further validate that by introducing
the MIL classifier, MIDL can suppress noisy instances and
therefore achieves more robust performance than CDAL and
random sampling.

Size of X 0
L. We conduct experiments under different

sizes of X 0
L to analyze the “cold start” issue [57] (Fig. 12(a)).

I = |X 0
L| denotes the size of X 0

L. In all experiments, the size
of XS is set to 2.5% of the training images. The starting sizes
I for each method are set to 5.0% (solid lines), 2.5% (dashed
lines) and 7.5% (dotted lines) respectively. It can be seen
that MIDL outperforms CDAL and random sampling with

all starting sizes I , demonstrating its robustness to the cold
start issue. When the size of X 0

L is set to 2.5% of the training
images, the performances of all methods significantly drop,
as the initialed labeled set is too small. The performance of
MIDL increases largely in the second cycle, validating that
MIDL can select more informative samples when the initial
labeled sets are small.

Biased Initial Sampling. We make an analysis on how
the sampling bias of the initially labeled sets affects the
detection performance. With biased sampling, the sample
distributions of the labeled and the unlabeled sets are not
consistent, which imposes challenges to active learners. We
model a possible form of bias in the initial labeled sets by not
providing images and labels for b chosen classes at random
and we compare it to the cases where the initial labeled
images are randomly selected from all classes (i.e., b = 0).
Fig. 12(b) shows the performances for b = 0 (solid lines),
b = 2 (dashed lines) and b = 4 (dotted lines). With the
biased initial sampling, MIDL outperforms the compared
methods at all active learning cycles.

Noisy Labeling. We randomly change the image labels
to its similar classes, which is thought to be the major
annotation noise caused by low quality images and/or
non-professional annotators. To simulate images with noisy
labels, divide the PASCAL VOC dataset to 4 super-classes
(i.e., person, animal, vehicle and indoor super-classes [58])
and 20 sub-classes. Let ε denote the percentage of selected
objects in the training set. We set ε = 0% (solid lines),
ε = 10% (dashed lines), and ε = 20% (dotted lines). For
each selected object, we change its class label to a random
wrong class label from the super-class.

Fig. 12(c) shows the effects of noisy labeling of MIDL and
the compared methods. As the percentage of noisy labels
increases, CDAL’s mAP tends to close to that of random
sampling, while MIDL’s mAP maintains superior to those
of CDAL and random sampling when ε = 10% or ε = 20%.
The performance of “MIDL (ε = 20%)” is significantly better
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than those of “CDAL (ε = 20%)” and even comparable
to that of “CDAL (ε = 10%)”. This validates that MIDL
improves the robustness to noisy labeling.

Size of XS . In each active learning cycle, a set of images
XS (defined in Section 3.1) are selected and labeled. We
make analysis on different sizes of XS which are set to
2.5% (solid lines) and 5.0% (dashed lines) of the training
images, respectively in Fig. 13. B = |XS | denotes the size
of XS . The experiments are conducted with the same initial
labeled set and the same annotation budget. It can be seen
that with larger sizes of XS , MIDL remains outperforming
the compared methods in all cycles, validating that MIDL’s
performance is more robust to the size of XS .

5 CONCLUSION

In this paper, we formulate the instance-level active learning
in the Bayesian framework and propose Multiple Instance
Differentiation Learning (MIDL) to select informative im-
ages. In the Bayesian framework, we estimate the image
uncertain probability by performing the total probability
formula to differentiate and aggregate the instance-level
uncertain probability with the instance class probability and
instance objectness probability. MIDL consists of a class
prediction differentiation module and a multiple instance
differentiation module. During training, the class prediction
differentiation module trains the instance-level model on the
labeled and unlabeled images to estimate the instance-level
uncertain probability. The multipe instance differentiation
module learns the instance class probability and instance
objectness probability through a multiple instance learn-
ing module. We reveal that existing instance-level active
learning methods are special cases of MIDL, where the
instance class probability or/and instance objectness proba-
bility is/are set to be the uniform distribution. Experiments
on commonly used object detection and video object de-
tection datasets show that MIDL outperforms state-of-the-
art methods with significant margins, particularly when the
labeled sets are small. MIDL has set a solid baseline for
instance-level active learning.
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